Accelerator Physics Center Annual Meeting

High Intensity Neutrino Source Department Overview

Bob Webber June 2, 2009

APGWWW HINS Department Personnel

- Jean-Paul Carneiro Particle tracking code development and Linac modeling
- Dave Johnson Project X H- injection design and laser wire beam profile monitor
- **Ken Koch** HINS MDB installations, Tevatron electronics support, and ProCard
- Robyn Madrak 325 MHz beam chopper, cavity testing, and RF vector modulators
- Elmie Peoples-Evans HINS controls & interlocks, LLRF, and SSR coupler testing
- Henryk Piekarz Rapid cycling SC magnet R&D and HINS proton ion source system
- Jim Steimel HINS RF systems, RFQ commissioning, and MDB operations
- Dave Wildman RF vector modulators, RF testing, and ANU RR RF cavity design
- Bob Zwaska Electron cloud investigations
- (Wai Ming Tam) TD Graduate Student working on HINS
- **Bob Webber**

Phys Rev. Paper

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 040102 (2009)

Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

J.-P. Carneiro*

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

B. Mustapha and P. N. Ostroumov

Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 12 December 2008; published 27 April 2009; corrected 20 May 2009)

Numerical simulations of H⁻ stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H⁻ linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

BLACKBODY STRIPPING FNAL 8-GeV

PACS num

NIM Paper

Phys Rev. Paper Special Edition HB2008

Physics design of front ends for superconduting ion linacs

P. N. Ostroumov Argonne National Laboratory, Argonne, Illinois 60439 USA

J.-P. Carneiro*
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 USA
(Dated: January 30, 2009)

Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H $^-$ beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a \sim 400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space-charge and a compact focusing lattice. As an example, we discuss the SC front-end of the H $^-$ linac for the FNAL Proton Driver.

PACS numbers: 29.27.-a,41.75.Cn

→ Why SC front-end and not NC (like CERN SPL, SNS, J-PARC,...)

H- Beam Laser Wire Profile Monitor

APOWW Characterizing Laser Optics

Approximate path length in tunnel installation

Beam size and energy measurement

> Stripped down optics box

> > Spot size at focus ~100-200 microns

Planned 400MeV Line Installation

Electron Cloud Work

- ECloud observed in Main Injector
- Threshold effect
- Conditioning of pipe surfaces

Electron Cloud Experimental Upgrade

APOWW Ion Source Installed in MDB

RFQ Installed in MDB

Progression of Detuning

RFQ in Vacuum Tank

RFQ Close-up

RFQ RF Joint Failure

HINS RT Cavity & Vector Modulator

Spoke Cavity Input Coupler Test Stand

First full-power coupler tests have been successfully completed

Spoke Cavity in VTS

SSR1-02 in VTS

Summary

LOTS OF EXCITING ACTIVITY UNDERWAY IN THE APC HINS DEPARTMENT !!!

APOWW Bob Zwaska's e-cloud Work

To be installed in Main Injector, Summer 2009 :

- 2 New experimental Chambers
 - Test TiN coating for ECloud suppression
 - Measure spatial extinction of ECloud
- 3 Fermilab and 1 Argonne RFA
 - Retarding Field Analyzers
 - Directly measure electron flux
 - Compare designs
- 3 microwave antennas and 2 absorbers
 - Measure ECloud density by phase delay of microwaves

SSR1-02 in VTS

Goals of HINS Program

- Stated Mission To address accelerator physics and technology questions for a new concept, low-energy, high intensity, longpulse H- superconducting Linac; in particular, to demonstrate:
 - beam acceleration using superconducting spoke-type cavity structures starting at a beam energy of 10 MeV
 - multiple high power RF vector modulators controlling RF cavities driven by a single high power klystron for acceleration of a nonrelativistic beam
 - beam halo and emittance growth control by the use of solenoid focusing optics
 - a fast, 325 MHz bunch-by-bunch, beam chopper
- The current scope of HINS includes two CM of β = 0.2 SSR1 spoke cavities to achieve 30 MeV